Abstract
The financial market is a complex system, which has become more complicated due to the sudden impact of the COVID-19 pandemic in 2020. As a result there may be much higher degree of uncertainty and volatility clustering in stock markets. How does this “black swan” event affect the fractal behaviors of the stock market? How to improve the forecasting accuracy after that? Here we study the multifractal behaviors of 5-min time series of CSI300 and S&P500, which represents the two stock markets of China and United States. Using the Overlapped Sliding Window-based Multifractal Detrended Fluctuation Analysis (OSW-MF-DFA) method, we found that the two markets always have multifractal characteristics, and the degree of fractal intensified during the first panic period of pandemic. Based on the long and short-term memory which are described by fractal test results, we use the Gated Recurrent Unit (GRU) neural network model to forecast these indices. We found that during the large volatility clustering period, the prediction accuracy of the time series can be significantly improved by adding the time-varying Hurst index to the GRU neural network.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Physics and Astronomy
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献