Near Real-Time Detection of E. coli in Reclaimed Water

Author:

Sherchan Samendra,Miles Syreeta,Ikner Luisa,Yu Hye-WeonORCID,Snyder Shane,Pepper Ian

Abstract

Advanced treatment of reclaimed water prior to potable reuse normally results in the inactivation of bacterial populations, however, incremental treatment failure can result in bacteria, including pathogens, remaining viable. Therefore, potential microorganisms need to be detected in real-time to preclude potential adverse human health effects. Real-time detection of microbes presents unique problems which are dependent on the water quality of the test water, including parameters such as particulate content and turbidity, and natural organic matter content. In addition, microbes are unusual in that: (i) viability and culturability are not always synonymous; (ii) viability in water can be reduced by osmotic stress; and (iii) bacteria can invoke repair mechanisms in response to UV disinfection resulting in regrowth of bacterial populations. All these issues related to bacteria affect the efficacy of real-time detection for bacteria. Here we evaluate three different sensors suitable for specific water qualities. The sensor A is an on-line, real-time sensor that allows for the continuous monitoring of particulates (including microbial contaminants) using multi-angle-light scattering (MALS) technology. The sensor B is a microbial detection system that uses optical technique, Mie light scattering, for particle sizing and fluorescence emission for viable bacteria detection. The last sensor C was based on adenosine triphosphate (ATP) production. E. coli was used a model organism and out of all tested sensors, we found the sensor C to be the most accurate. It has a great potential as a surrogate parameter for microbial loads in test waters and be useful for process control in treatment trains.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference11 articles.

1. Water distribution systems as living ecosystems: Impact on taste and odor

2. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review

3. Survival strategies of bacteria in the natural environment;Roszack;Microbiol. Rev.,1987

4. Predicting pharmaceutical degradation by UV (MP)/H2O2 processes: A kinetic model

5. Survival, growth and regrowth of enteric indicator and pathogenic bacteria in biosolids, compost, soil and land applied biosolids;Zaleski;J. Res. Sci. Technol.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3