The Optimal Placement and Sizing of Distributed Generation in an Active Distribution Network with Several Soft Open Points

Author:

Karunarathne EshanORCID,Pasupuleti Jagadeesh,Ekanayake Janaka,Almeida Dilini

Abstract

A competent methodology based on the active power loss reduction for optimal placement and sizing of distributed generators (DGs) in an active distribution network (ADN) with several soft open points (SOPs) is proposed. A series of SOP combinations are explored to generate different network structures and they are utilized in the optimization framework to identify the possible solutions with minimum power loss under normal network conditions. Furthermore, a generalized methodology to optimize the size and the location of a predefined number of DGs with a predefined number of SOPs is presented. A case study on the modified IEEE 33 bus system with three DGs and five SOPs was conducted and hence the overall network power loss and the voltage improvement were examined. The findings reveal that the system loss of the passive network without SOPs and DGs is reduced by 79.5% using three DGs and five SOPs. In addition, this research work introduces a framework using the DG size and the impedance to the DG integration node, to propose a region where the DGs can be optimally integrated into an ADN that includes several SOPs.

Funder

Kementerian Pendidikan Malaysia

Universiti Tenaga Nasional

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference43 articles.

1. Global Energy Transformation: A Roadmap to 2050,2018

2. Impact of Increasing Contribution of Dispersed Generation on the Power System-Final Report,1998

3. Allocation of distributed generation units in electric power systems: A review

4. An Approach to Quantify the Technical Benefits of Distributed Generation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3