Controllable-Dual Bridge Fault Current Limiter for Interconnection Micro-Grids

Author:

Kartijkolaie Hossein Shahbabaei,Hsia Kuo-Hsien,Mobayen SalehORCID,Firouzi Mehdi,Shafiee Mohammadreza

Abstract

Different types of fault current limiters (FCLs) have been developed and designed based on non-superconducting DC reactors (NSDRs). This paper proposes a controllable dual-bridge FCL (CDBFCL) based on the NSDR for use in an AC-type micro-grid. It includes a NSDR and two series and shunt bridge circuits. The series bridge is based on diode semiconductor switches and is coupled in series with the line via a transformer. The shunt bridge is based on thyristor semiconductor switches and is coupled in parallel with the line. The shunt bridge provides a variable voltage source. It compensates for the DC side voltage drop due to NSDR resistance and semiconductor switches during normal operating condition. In addition, by controlling the shunt bridge firing angle, it produces a controllable DC voltage, which can control the fault current amplitude during a fault. The structure, principle operating work, and control system of the proposed CDBFCL are presented. The CDBFCL performance is studied analytically and through simulation by the PSCAD/EMTDC software. In addition, the simulation results are compared with those obtained experimentally from a prototype CDBFCL and show a close correlation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Resilience-Oriented Methodology for Transformation of the Distribution Networks into MicroGrid;International Transactions on Electrical Energy Systems;2022-07-21

2. Single AC/DC fault current limiter for both side of hybrid AC/DC microgrid;International Journal of Electronics;2022-06-23

3. Modified solid-state fault current limiter based on AC/DC reactor;International Journal of Electronics;2021-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3