Crashed Electric Vehicle Handling and Recommendations—State of the Art in Germany

Author:

Wöhrl KatharinaORCID,Geisbauer ChristianORCID,Nebl Christoph,Lott Susanne,Schweiger Hans-Georg

Abstract

In the near future, electric powered vehicles will represent a major part of the road traffic. Accordingly, there will be a natural increase of accidents involving electric vehicles. There are not many cases of such accidents yet and therefore the experience and correct handling are still partially open points for the involved parties, such as the rescue services for example. The aim of this work is to provide a complete overview of the accident handling sequence in Germany, starting with the damaged vehicle on site and moving on to the risks and challenges for the stakeholders, such as transport and recycling companies. Arising from the developed overview, a handling recommendation for yet undiscussed points is given. Especially, different extinguishing and deactivation methods are compared and discussed. Due to a lack of a common live-feed from battery data on site, other criteria have to be taken into account to assess the state of the battery. The wrecked vehicle—including the high voltage system—needs to be in a definite safe state at the handover to a towing service. Depending on the case, different options for securing the vehicle will be considered in this work.

Funder

European Regional Development Fund

Horizon 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference97 articles.

1. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

2. Fail-safe design for large capacity lithium-ion battery systems

3. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011http://data.europa.eu/eli/reg/2019/631/oj

4. Verteilung der Energiebedingten CO2-Emissionen Weltweit nach Sektor im Jahr 2018https://de.statista.com/statistik/daten/studie/167957/umfrage/verteilung-der-co-emissionen-weltweit-nach-bereich/

5. Saubere Mobilität: Parlament und EU-Staaten Einig über Neue CO2-Grenzwerte für Autoshttps://ec.europa.eu/germany/news/20181218-co2-grenzwerte-autos_de

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3