Estimation of Travel Demand Models with Limited Information: Floating Car Data for Parameters’ Calibration

Author:

Croce Antonello IgnazioORCID,Musolino GiuseppeORCID,Rindone CorradoORCID,Vitetta Antonino

Abstract

This paper attempts to integrate data from models, traditional surveys and big data in a situation of limited information. The goal is to increase the capacity of transport planners to analyze, forecast, and plan passenger mobility. (Big) data are a precious source of information and substantial effort is necessary to filter, integrate, and convert big data into travel demand estimates. Moreover, data analytics approaches without demand models are limited because they allow: (a) the analysis of historical and/or real-time transport system configurations, and (b) the forecasting of transport system configurations in ordinary conditions. Without the support of travel demand models, the mere use of (big) data does not allow the forecasting of mobility patterns. The paper attempts to support traditional methods of transport systems engineering with new data sources from ICTs. By combining traditional data and floating car data (FCD), the proposed framework allows the estimation of travel demand models (e.g., trip generation and destination). The proposed method can be applied in a specific case of an area where FCD are available, and other sources of information are not available. The results of an application of the proposed framework in a sub-regional area (Calabria, southern Italy) are presented.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference42 articles.

1. United Nations: Sustainable Development Goals (SDGs)http://www.un.org/sustainabledevelopment/sustainable-development-goals

2. Big Data: Big gaps of knowledge in the field of Internet”;Snijders;Int. J. Internet Sci.,2012

3. Transport models and intelligent transportation system to support urban evacuation planning process;Chilà;IET Intell. Transp. Syst.,2016

4. Emerging Data Collection Techniques for Travel Demand Modeling: A Literature Review Final Report;Lee,2014

5. Workshop Synthesis: Data analytics and fusion in a world of multiple sensing and information capture mechanisms

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3