A Residential Load Scheduling with the Integration of On-Site PV and Energy Storage Systems in Micro-Grid

Author:

Ullah IhsanORCID,Rasheed Muhammad BabarORCID,Alquthami ThamerORCID,Tayyaba Shahzadi

Abstract

The smart grid (SG) has emerged as a key enabling technology facilitating the integration of variable energy resources with the objective of load management and reduced carbon-dioxide (CO 2 ) emissions. However, dynamic load consumption trends and inherent intermittent nature of renewable generations may cause uncertainty in active resource management. Eventually, these uncertainties pose serious challenges to the energy management system. To address these challenges, this work establishes an efficient load scheduling scheme by jointly considering an on-site photo-voltaic (PV) system and an energy storage system (ESS). An optimum PV-site matching technique was used to optimally select the highest capacity and lowest cost PV module. Furthermore, the best-fit of PV array in regard with load is anticipated using least square method (LSM). Initially, the mathematical models of PV energy generation, consumption and ESS are presented along with load categorization through Zero and Finite shift methods. Then, the final problem is formulated as a multiobjective optimization problem which is solved by using the proposed Dijkstra algorithm (DA). The proposed algorithm quantifies day-ahead electricity market consumption cost, used energy mixes, curtailed load, and grid imbalances. However, to further analyse and compare the performance of proposed model, the results of the proposed algorithm are compared with the genetic algorithm (GA), binary particle swarm optimization (BPSO), and optimal pattern recognition algorithm (OPRA), respectively. Simulation results show that DA achieved 51.72% cost reduction when grid and renewable sources are used. Similarly, DA outperforms other algorithms in terms of maximum peak to average ratio (PAR) reduction, which is 10.22%.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3