Non-Additive Effects of Mixing Eucalyptus and Castanopsis hystrix Trees on Carbon Stocks under an Eco-Silviculture Regime in Southern China

Author:

Wang Lei,Zhou Xiaoguo,Wen Yuanguang,Sun Dongjing

Abstract

Eucalyptus plantations harbor great potential for supporting ecosystem services, but this prospect is weakened under long-term traditional silviculture regimes. To reform these traditional silviculture regimes, we carried out a long-term Eucalyptus eco-silviculture experiment. However, the derived benefits and mechanisms that arise in mixed species stands under the eco-silviculture regime are not fully understood. Here, we evaluated tree carbon storage (TCS), understory vegetation carbon storage (UCS), floor litter carbon storage (FLCS), soil organic carbon storage (SOCS), and ecosystem carbon storage (ECS) in seven-year-old mono-specific plantations of a Eucalyptus hybrid (E. urophylla × E. grandis) and Castanopsis hystrix, as well as mixed plantations of these two trees under an eco-silviculture regime in southern China. The results showed that the tree height, diameter at breast height (DBH), volume, and biomass of eucalypt trees and C. hystrix in the mixed plantation were significantly higher than that of the trees in the corresponding single-species plantations. The mixed-species plantation had the largest TCS (84.33 Mg ha−1), FLCS (4.34 Mg ha−1), and ECS (313.31 Mg ha−1), as well as a higher SOCS (233.98 Mg ha−1), but the lowest UCS (0.96 Mg ha−1), among the three plantation types. The mixture effects analysis revealed significant synergistic effects (non-additive effect, NAE > 0) on TCS, SOCS, and ECS, and significant antagonistic effects (NAE < 0) on UCS. These synergistic effects were mainly due to the complementary ecological niches of the two species in the mixed-species plantation, which could potentially enable them to maximize the use of local resources, and to increase stand productivity and litter production. These results imply that beyond the gains in timber production obtained by having both Eucalyptus and C. hystrix trees growing in the same plantation stand, such mixed-species plantations enhance carbon sequestration to a greater extent than mono-specific plantations of either Eucalyptus or C.hystrix trees. In conclusion, we suggest planting mixed plantations of species with complementary ecological niches under an eco-silviculture regime, to effectively resolve the contradiction between timber production and ecosystem services, and, thereby, also promote the sustainable development of Eucalyptus plantations.

Funder

China’s National Natural Science Foundation

Guangxi Key Research and Development Program

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3