Heat Loss Reduction Approach in Cavity Receiver Design Based on Performance Investigation of a Novel Positive Conical Scheme

Author:

Na XinchenORCID,Yao YingxueORCID,Zhao Chenyang,Du Jianjun

Abstract

The cavity receiver’s thermal conversion performance is critical for parabolic dish and tower Concentrated Solar Power (CSP) systems. Distinct from precedent research aiming to increase the receiver’s absorption through cavity geometry optimization, the objective of this work was to investigate the thermal conversion performance of a novel, positive conical cavity receiver design, following the heat loss reduction approach with simplified pipe forming, to stress the effectiveness of this approach in cavity receiver design, and to provide data for future optimization of the proposed design. To accomplish these goals, the novel receiver and existing designs’ heat flux absorption and heat loss are compared numerically. The resulting conversion power is also experimentally validated. The concept is inspired by analysis of formulas, suggesting the novel design may realize a thermal conversion improvement of 8.6%, at 650 K, and increases with the rise in temperature. The comprehensive numerical investigation combines ray tracing of identical incoming radiation to investigate the receiver absorption and CFD methods to investigate the cavities’ heat loss at identical temperatures. The absorption acquired is unoptimized. The novel design can reduce the heat loss by as much as 91.8% when compared with a negative conical design at 650 K, resulting in a 12.3% improvement in conversion power. The experimental investigation measures the energy conversion to the working fluid in different cavities under identical incoming radiation. The novel receiver outperforms by over 5.6% in the setup. After correcting boundary conditions using experiment measurements, the experimental and numerical results are comparable. This research proves that the novel positive conical receiver has a better thermal conversion performance over 650 K; thus, the heat loss reduction approach is effective and feasible in receiver designs within this temperature range.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3