An Effective Numerical Simulation Method for Steam Injection Assisted In Situ Recovery of Oil Shale

Author:

Chen Xudong,Rao Xiang,Xu Yunfeng,Liu Yina

Abstract

This paper presents an effective numerical simulation method for production prediction of in situ recovery of oil shale reservoirs with steam injection. In this method, finite volume-based discretization schemes of heat and mass transfer equations of the thermal compositional model are derived and used. The embedded discrete fracture model is used to accurately handle the fractured vertical well. A smooth non-linear solver is proposed to solve the global equations, then cell pressure, temperature, saturation, component mole fractions, and well production rates can be obtained. Compared with the existing commercial software, this new method can have a smoother non-linear solution and handle the complex fracture geometry theoretically. A numerical example is used to test this presented method and can realize accurate calculation results compared with CMG. Another numerical case with a hydraulic fracture and an open thermal boundary condition is implemented to validate the presented method and can effectively handle the actual situation of steam injection-assisted in situ recovery of oil shale, which was difficult to handle using previous methods.

Funder

State Center for Research and Development of Oil Shale Exploitation, and Cooperative In-novation Center of Unconventional Oil and Gas (Ministry of Education & Hubei Province), Yangtze University,

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. General kinetic model of oil shale pyrolysis;Burnham;In Situ,1985

2. Mathematical model of oil generation, degradation, and expulsion

3. Chemical Reaction Model for Oil and Gas Generation from Type 1 and Type 2 Kerogen;Braun,1993

4. A comprehensive review of microwave application on the oil shale: Prospects for shale oil production

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3