Wind Speed Prediction for Offshore Sites Using a Clockwork Recurrent Network

Author:

Shi YuxuanORCID,Wang Yanyu,Zheng Haoran

Abstract

Offshore sites show greater potential for wind energy utilization than most onshore sites. When planning an offshore wind power farm, the speed of offshore wind is used to estimate various operation parameters, such as the power output, extreme wind load, and fatigue load. Accurate speed prediction is crucial to the running of wind power farms and the security of smart grids. Unlike onshore wind, offshore wind has the characteristics of random, intermittent, and chaotic, which will cause the time series of wind speeds to have strong nonlinearity. It will bring greater difficulties to offshore wind speed predictions, which traditional recurrent neural networks cannot deal with for lacking in long-term dependency. An offshore wind speed prediction method is proposed by using a clockwork recurrent network (CWRNN). In a CWRNN model, the hidden layer is subdivided into several parts and each part is allocated a different clock speed. Under the mechanism, the long-term dependency of the recurrent neural network can be easily addressed, which can furthermore effectively solve the problem of strong nonlinearity in offshore speed winds. The experiments are performed by using the actual data of two different offshore sites located in the Caribbean Sea and one onshore site located in the interior of the United States, to verify the performance of the model. The results show that the prediction model achieves significant accuracy improvement.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3