Experimental Studies of Low-Load Limit in a Stoichiometric Micro-Pilot Diesel Natural Gas Engine

Author:

Bonfochi Vinhaes ViniciusORCID,McTaggart-Cowan GordonORCID,Munshi Sandeep,Shahbakhti MahdiORCID,Naber Jeffrey D.

Abstract

While operating at light loads, diesel pilot-ignited natural gas engines with lean premixed natural gas suffer from poor combustion efficiency and high methane emissions. This work investigates the limits of low-load operation for a micro-pilot diesel natural gas engine that uses a stoichiometric mixture to enable methane and nitrogen oxide emission control. By optimizing engine hardware, operating conditions, and injection strategies, this study focused on defining the lowest achievable load while maintaining a stoichiometric equivalence ratio and with acceptable combustion stability. A multi-cylinder diesel 6.7 L engine was converted to run natural gas premix with a maximum diesel micro-pilot contribution of 10%. With a base diesel compression ratio of 17.3:1, the intake manifold pressure limit was 80 kPa(absolute). At a reduced compression ratio of 15:1, this limit increased to 85 kPa, raising the minimum stable load. Retarding the combustion phasing, typically used in spark-ignition engines to achieve lower loads, was also tested but found to be limited by degraded diesel ignition at later timings. Reducing the pilot injection pressure improved combustion stability, as did increasing pilot quantity at the cost of lower substitution ratios. The lean operation further reduced load but increased NOx and hydrocarbon emissions. At loads below the practical dual-fuel limit, a transition to lean diesel operation will likely be required with corresponding implications for the aftertreatment system.

Funder

Vehicle Technologies Office

Westport Fuel Systems Inc.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3