Analysis of Gas-Turbine Type GT-009 M Low-Toxic Combustion Chamber with Impact Cooling of the Burner Pipe Based on Combustion of Preliminarily Prepared Depleted Air–Fuel Mixture

Author:

Maspanov SergejORCID,Bogov Igor,Smirnov Alexander,Martynenko Svetlana,Sukhanov Vladimir

Abstract

This article analyzes the mechanism of formation of the main components of harmful emissions characteristic of combustion chambers operating on conventional hydrocarbon fuels. The method of combustion of a preliminarily prepared depleted air–fuel mixture was chosen as the object of the study. This method of suppressing harmful emissions was implemented in the design of a low-toxic combustion chamber developed as applied to the GT-009 M type unit with impact cooling of the burner pipe and provides for stabilization of the main kinetic flame by means of a diffusion-kinetic and a standby burner device. The results of the calculations performed with regard to the operating conditions of the low-toxic combustion chamber at the nominal load of GT-009 M allow us to conclude that the practical use of combustion of a depleted, preprepared, fuel–air mixture in combination with diffusion-kinetic stabilization of combustion is promising. The topic of this article is related to the problem of ecological improvement of gas turbine unit combustion chambers, which determines its utmost importance and relevance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. Gas Turbine Combustion Alternative Fuels and Emissions;Lefebvre,2010

2. Razrabotka normativnogo dokumenta na proektirovanie i ekspluataciyu sistem nepreryvnogo kontrolya i ucheta vrednyh vybrosov TES;Roslyakov;Ind. Power Eng.,2016

3. Energeticheskie i Ekologicheskie Harakteristiki GTD pri Ispol’zovanii Uglevodorodnyh Topliv i Vodoroda;Canilo,1987

4. Formation of nitric oxide from fuel nitrogen in ethylene flames

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3