Machine Learning Approach for Maximizing Thermoelectric Properties of BiCuSeO and Discovering New Doping Element

Author:

Parse Nuttawat,Pongkitivanichkul ChakritORCID,Pinitsoontorn SupreeORCID

Abstract

Machine learning (ML) has increasingly received interest as a new approach to accelerating development in materials science. It has been applied to thermoelectric materials research for discovering new materials and designing experiments. Generally, the amount of data in thermoelectric materials research, especially experimental data, is very small leading to an undesirable ML model. In this work, the ML model for predicting ZT of the doped BiCuSeO was implemented. The method to improve the model was presented step-by-step. This included normalizing the experimental ZT of the doped BiCuSeO with the pristine BiCuSeO, selecting data for the BiCuSeO doped at Bi-site only, and limiting important features for the model construction. The modified model showed significant improvement, with the R2 of 0.93, compared to the original model (R2 of 0.57). The model was validated and used to predict the ZT of the unknown doped BiCuSeO compounds. The predicted result was logically justified based on the thermoelectric principle. It means that the ML model can guide the experiments to improve the thermoelectric properties of BiCuSeO and can be extended to other materials.

Funder

Thailand Research Fund

Khon Kaen University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3