A Polynomial Approximation to Self Consistent Solution for Schrödinger–Poisson Equations in Superlattice Structures

Author:

Mączka MariuszORCID,Pawłowski Stanisław

Abstract

The paper deals with a new approach to iterative solving the Schrödinger and Poisson equations in the first type of semiconductor superlattice. Assumptions of the transfer matrix method are incorporated into the approach, which allows to take into account the potential varying within each single layer of bias voltage superlattice. The key process of the method is to approximate the charge density and wave functions with polynomials. It allows to obtain semi-analytical solutions for the Schrödinger and Poisson equations, which in turn have significant impact on the accuracy and speed of superlattice simulations. The presented procedure is also suifihue for finding eigenstates extended over relatively large superlattice area, and it can be used as an effective pro-gram module for a superlattice finite model. The obtained quantum states are very similar to the Wannier-Stark functions, and they can serve as the base under non-equilibrium Green’s function formalism (NEGF). Exemplary results for Schrödinger and Poisson solutions for superlattices based on the GaAs/AlGaAs heterostructure are presented to prove all the above.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3