Abstract
Water reclamation is becoming a growing need, in particular in developing countries where harvesting the required energy can be a challenging problem. In this context, exploiting solar energy in a specifically tailored membrane distillation (MD) process can be a viable solution. Traditional MD guarantees a complete retention of non-volatile compounds and does not require high feed water temperatures. In this work, a suitable amount of carbon black (CB) was incorporated into the whole matrix of a polymeric porous membrane in order to absorb light and directly heat the feed. The mixed matrix membranes were prepared forming a uniform CB dispersion in the PVDF dope solution and then using a non-solvent induced phase separation process, which is a well-established technique for membrane manufacturing. CB addition was found to be beneficial on both the membrane structure, as it increased the pore size and porosity, and on the photothermal properties of the matrix. In fact, temperatures as high as 60 °C were reached on the irradiated membrane surface. These improvements led to satisfactory distillate flux (up to 2.3 L/m2h) during the direct solar membrane distillation tests performed with artificial light sources and make this membrane type a promising candidate for practical applications in the field of water purification.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献