A Neural Network Computational Spectrometer Trained by a Small Dataset with High-Correlation Optical Filters

Author:

Liao Haojie1ORCID,Yang Lin12ORCID,Zheng Yuanhao1,Wang Yansong12ORCID

Affiliation:

1. Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China

2. Institute of Space Sciences, Shandong University, Weihai 264209, China

Abstract

A computational spectrometer is a novel form of spectrometer powerful for portable in situ applications. In the encoding part of the computational spectrometer, filters with highly non-correlated properties are requisite for compressed sensing, which poses severe challenges for optical design and fabrication. In the reconstruction part of the computational spectrometer, conventional iterative reconstruction algorithms are featured with limited efficiency and accuracy, which hinders their application for real-time in situ measurements. This study proposes a neural network computational spectrometer trained by a small dataset with high-correlation optical filters. We aim to change the paradigm by which the accuracy of neural network computational spectrometers depends heavily on the amount of training data and the non-correlation property of optical filters. First, we propose a presumption about a distribution law for the common large training dataset, in which a unique widespread distribution law is shown when calculating the spectrum correlation. Based on that, we extract the original dataset according to the distribution probability and form a small training dataset. Then a fully connected neural network architecture is constructed to perform the reconstruction. After that, a group of thin film filters are introduced to work as the encoding layer. Then the neural network is trained by a small dataset under high-correlation filters and applied in simulation. Finally, the experiment is carried out and the result indicates that the neural network enabled by a small training dataset has performed very well with the thin film filters. This study may provide a reference for computational spectrometers based on high-correlation optical filters.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3