Artificial Intelligence Methodologies Applied to Prompt Pluvial Flood Estimation and Prediction

Author:

Chang Deng-Lin,Yang Sheng-Hsueh,Hsieh Sheau-Ling,Wang Hui-Jung,Yeh Keh-Chia

Abstract

Regarding urban flooding issues, applying Artificial Intelligence (AI) methodologies can provide a timely prediction of imminent incidences of flash floods. The study aims to develop and deploy an effective real-time pluvial flood forecasting AI platform. The platform integrates rainfall hyetographs embedded with uncertainty analyses as well as hydrological and hydraulic modeling. It establishes a large number synthetic of torrential rainfall events and their simulated flooding datasets. The obtained data contain 6000 sets of color-classified rainfall hyetograph maps and 300,000 simulated flooding maps (water depth) in an urban district. The generated datasets are utilized for AI image processing. Through the AI deep learning classifications, the rainfall hyetograph map feature parameters are detected and extracted. The trained features are applied to predict potential rainfall events, recognize their potential inundated water depths as well as display flooding maps in real-time. The performance assessments of the platform are evaluated by Root Means Square Error (RMSE), Nash Sutcliffe Efficiency Coefficient (NSCE) and Mean Absolute Percentage Error (MAPE). The results of RMSE and NSCE indicators illustrate that the methodologies and approaches of the AI platform are reliable and acceptable. However, the values of MAPE show inconsistency. Ultimately, the platform can perform and be utilized promptly in real-time and ensure sufficient lead time in order to prevent possible flooding hazards.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference47 articles.

1. Past Weather in Taipei Taiwan September 2018https://www.timeanddate.com/weather/taiwan/taipei/historic?month=9&year=2018

2. HEC-RAS (US Army Corp. of Engineers)https://www.hec.usace.army.mil/

3. SOBEK or 3Di (Deltares)https://www.deltares.nl/en/software/sobek/

4. MIKE (DHI)https://www.mikepoweredbydhi.com/mike-2019

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3