Abstract
The skin secretion of tree frogs contains a vast array of bioactive chemicals for repelling predators, but their structural and functional diversity is not fully understood. Paxilline (PAX), a compound synthesized by Penicillium paxilli, has been known as a specific antagonist of large conductance Ca2+-activated K+ Channels (BKCa). Here, we report the presence of PAX in the secretions of tree frogs (Hyla japonica) and that this compound has a novel function of inhibiting the potassium channel subfamily K member 18 (KCNK18) channels of their predators. The PAX-induced KCNK18 inhibition is sufficient to evoke Ca2+ influx in charybdotoxin-insensitive DRG neurons of rats. By forming π-π stacking interactions, four phenylalanines located in the central pore of KCNK18 stabilize PAX to block the ion permeation. For PAX-mediated toxicity, our results from animal assays suggest that the inhibition of KCNK18 likely acts synergistically with that of BKCa to elicit tingling and buzzing sensations in predators or competitors. These results not only show the molecular mechanism of PAX-KCNK18 interaction, but also provide insights into the defensive effects of the enriched PAX.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province
Subject
Health, Toxicology and Mutagenesis,Toxicology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献