Processing Properties and Potency of Bacillus thuringiensis Cry Toxins in the Rice Leaffolder Cnaphalocrocis medinalis (Guenée)

Author:

Yang Yajun1ORCID,Wu Zhihong1,He Xiaochan2,Xu Hongxing1,Lu Zhongxian1

Affiliation:

1. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

2. Jinhua Academy of Agricultural Sciences, Jinhua 321000, China

Abstract

Different Cry toxins derived from Bacillus thuringiensis (Bt) possess different insecticidal spectra, whereas insects show variations in their susceptibilities to different Cry toxins. Degradation of Cry toxins by insect midgut extracts was involved in the action of toxins. In this study, we explored the processing patterns of different Cry toxins in Cnaphalocrocis medinalis (Lepidoptera: Crambidae) midgut extracts and evaluated the impact of Cry toxins degradation on their potency against C. medinalis to better understand the function of midgut extracts in the action of different Cry toxins. The results indicated that Cry1Ac, Cry1Aa, and Cry1C toxins could be degraded by C. medinalis midgut extracts, and degradation of Cry toxins by midgut extracts differed among time or concentration effects. Bioassays demonstrated that the toxicity of Cry1Ac, Cry1Aa, and Cry1C toxins decreased after digestion by midgut extracts of C. medinalis. Our findings in this study suggested that midgut extracts play an important role in the action of Cry toxins against C. medinalis, and the degradation of Cry toxins by C. medinalis midgut extracts could reduce their toxicities to C. medinalis. They will provide insights into the action of Cry toxins and the application of Cry toxins in C. medinalis management in paddy fields.

Funder

the earmarked fund for China Agriculture Research System

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Reference75 articles.

1. Bacillus thuringiensis and its pesticidal crystal proteins;Schnepf;Microbiol. Mol. Biol. Rev.,1998

2. Insecticidal activity of Bacillus thuringiensis crystal proteins;J. Insect Physiol.,2009

3. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action;Adang;Adv. Insect Physiol.,2014

4. Bacillus thuringiensis and its application in agriculture;Ali;Afr. J. Biotechnol.,2010

5. Bacillus thuringiensis: A century of research, development and commercial applications;Sanahuja;Plant Biotech. J.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3