Microcystin Concentrations, Partitioning, and Structural Composition during Active Growth and Decline: A Laboratory Study

Author:

Pierce Emily F.1,Schnetzer Astrid1ORCID

Affiliation:

1. Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA

Abstract

Microcystin can be present in variable concentrations, phases (dissolved and particulate), and structural forms (congeners), all which impact the toxicity and persistence of the algal metabolite. Conducting incubation experiments with six bloom assemblages collected from the Chowan River, North Carolina, we assessed microcystin dynamics during active growth and biomass degradation. Upon collection, average particulate and dissolved microcystin ranged between 0.2 and 993 µg L−1 and 0.5 and 3.6 µg L−1, respectively. The presence of congeners MC-LA, -LR, -RR, and -YR was confirmed with MC-RR and MC-LR being the most prevalent. Congener composition shifted over time and varied between dissolved and particulate phases. Particulate microcystin exponentially declined in five of six incubations with an average half-life of 10.2 ± 3.7 days, while dissolved microcystin remained detectable until the end of the incubation trials (up to 100 days). Our findings suggest that concerns about food-web transfer via intracellular toxins seem most warranted within the first few weeks of the bloom peak, while dissolved toxins linger for several months in the aftermath of the event. Also, it was indicated there were differences in congener profiles linked to the sampling method. We believe this study can inform monitoring strategies and aid microcystin-exposure risk assessments for cyanobacterial blooms.

Funder

NC Sea Grant Minigrant

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Snapshot of cyanobacterial toxins in Pakistani freshwater bodies;Environmental Science and Pollution Research;2024-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3