Age and Sex as Determinants of Acute Domoic Acid Toxicity in a Mouse Model

Author:

Hendrix Alicia M.1ORCID,Lefebvre Kathi A.2ORCID,Bowers Emily K.2,Stuppard Rudolph3,Burbacher Thomas1,Marcinek David J.3ORCID

Affiliation:

1. Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA

2. Environmental Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA

3. Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195, USA

Abstract

The excitatory neurotoxin domoic acid (DA) consistently contaminates food webs in coastal regions around the world. Acute exposure to the toxin causes Amnesic Shellfish Poisoning, a potentially lethal syndrome of gastrointestinal- and seizure-related outcomes. Both advanced age and male sex have been suggested to contribute to interindividual DA susceptibility. To test this, we administered DA doses between 0.5 and 2.5 mg/kg body weight to female and male C57Bl/6 mice at adult (7–9-month-old) and aged (25–28-month-old) life stages and observed seizure-related activity for 90 min, at which point we euthanized the mice and collected serum, cortical, and kidney samples. We observed severe clonic–tonic convulsions in some aged individuals, but not in younger adults. We also saw an association between advanced age and the incidence of a moderately severe seizure-related outcome, hindlimb tremors, and between advanced age and overall symptom severity and persistence. Surprisingly, we additionally report that female mice, particularly aged female mice, demonstrated more severe neurotoxic symptoms following acute exposure to DA than males. Both age and sex patterns were reflected in tissue DA concentrations as well: aged mice and females had generally higher concentrations of DA in their tissues at 90 min post-exposure. This study contributes to the body of work that can inform intelligent, evidence-based public health protections for communities threatened by more frequent and extensive DA-producing algal blooms.

Funder

UW Department of Environmental and Occupational Health Sciences, the NOAA Northwest Fisheries Science Center, National Institutes of Health

National Science Foundation

UW NIEHS

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3