The AwHog1 Transcription Factor Influences the Osmotic Stress Response, Mycelium Growth, OTA Production, and Pathogenicity in Aspergillus westerdijkiae fc-1

Author:

Wang Yufei1,Liu Fei2,Pei Jingying1,Yan Hao3,Wang Yan1ORCID

Affiliation:

1. College of Food Science and Technology, Zhejiang University of Technology, No. 18 Chaowang Road, Gongshu District, Hangzhou 310014, China

2. Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China

3. Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou 310051, China

Abstract

Aspergillus westerdijkiae, known as the major ochratoxin A (OTA) producer, usually occurs on agricultural crops, fruits, and dry-cured meats. Microorganisms produce OTA to adapt to the high osmotic pressure environment that is generated during food processing and storage. To investigate the relationship between OTA biosynthesis and the high osmolarity glycerol (HOG) pathway, the transcription factor AwHog1 gene in A. westerdijkiae was functionally characterised by means of a loss-of-function mutant. Our findings demonstrated that the growth and OTA production of a mutant lacking AwHog1 decreased significantly and was more sensitive to high osmotic media. The ΔAwHog1 mutant displayed a lower growth rate and a 73.16% reduction in OTA production in the wheat medium compared to the wild type. After three days of culture, the growth rate of the ΔAwHog1 mutant in medium with 60 g/L NaCl and 150 g/L glucose was slowed down 19.57% and 13.21%, respectively. Additionally, the expression of OTA biosynthesis genes was significantly reduced by the deletion of the AwHog1 gene. The infection ability of the ΔAwHog1 mutant was decreased, and the scab diameter of the pear was 6% smaller than that of the wild type. These data revealed that transcription factor AwHog1 plays a key role in the osmotic response, growth, OTA production, and pathogenicity in A. westerdijkiae.

Funder

National Natural Science Foundation of China

National Scholarship Fund of China

Key Research and Development Projects of Zhejiang

Visiting Scholar Teacher Professional Development Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3