Subchronic Microcystin-LR Aggravates Colorectal Inflammatory Response and Barrier Disruption via Raf/ERK Signaling Pathway in Obese Mice

Author:

Yang Yue1ORCID,Zheng Shuilin123,Chu Hanyu2,Du Can1,Chen Mengshi1,Emran Mohammed Y.4,Chen Jihua1ORCID,Yang Fei12ORCID,Tian Li5ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China

2. Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China

3. Changsha Center for Disease Control and Prevention, Changsha 410004, China

4. National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan

5. Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, China

Abstract

Microcystin-LR (MC-LR) is an extremely poisonous cyanotoxin that poses a threat to ecosystems and human health. MC-LR has been reported as an enterotoxin. The objective of this study was to determine the effect and the mechanism of subchronic MC-LR toxicity on preexisting diet-induced colorectal damage. C57BL/6J mice were given either a regular diet or a high-fat diet (HFD) for 8 weeks. After 8 weeks of feeding, animals were supplied with vehicle or 120 μg/L MC-LR via drinking water for another 8 weeks, and their colorectal were stained with H&E to detect microstructural alterations. Compared with the CT group, the HFD and MC-LR + HFD-treatment group induced a significant weight gain in the mice. Histopathological findings showed that the HFD- and MC-LR + HFD-treatment groups caused epithelial barrier disruption and infiltration of inflammatory cells. The HFD- and MC-LR + HFD-treatment groups raised the levels of inflammation mediator factors and decreased the expression of tight junction-related factors compared to the CT group. The expression levels of p-Raf/Raf and p-ERK/ERK in the HFD- and MC-LR + HFD-treatment groups were significantly increased compared with the CT group. Additionally, treated with MC-LR + HFD, the colorectal injury was further aggravated compared with the HFD-treatment group. These findings suggest that by stimulating the Raf/ERK signaling pathway, MC-LR may cause colorectal inflammation and barrier disruption. This study suggests that MC-LR treatment may exacerbate the colorectal toxicity caused by an HFD. These findings offer unique insights into the consequences and harmful mechanisms of MC-LR and provide strategies for preventing and treating intestinal disorders.

Funder

the Key Research and Development Projects in Hunan Province

the Huxiang Youth Talent Program

the National Natural Science Foundation of China

the graduate students independent exploration and innovation project of Central South University

the Hunan Provincial Innovation Foundation for Postgraduate

the Hunan Provincial Key Laboratory of Clinical Epidemiology

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3