Venom Proteomics of Trimeresurus gracilis, a Taiwan-Endemic Pitviper, and Comparison of Its Venom Proteome and VEGF and CRISP Sequences with Those of the Most Related Species

Author:

Tse Tsz-Chun1,Tsai Inn-Ho23,Chan Yuen-Ying4,Tsai Tein-Shun4ORCID

Affiliation:

1. Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan

2. Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan

3. Institute of Biochemical Sciences, National Taiwan University, Taipei 106319, Taiwan

4. Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan

Abstract

Trimeresurus gracilis is an endemic alpine pitviper in Taiwan with controversial phylogeny, and its venom proteome remains unknown. In this study, we conducted a proteomic analysis of T. gracilis venom using high-performance liquid chromatography-tandem mass spectrometry and identified 155 toxin proteoforms that belong to 13 viperid venom toxin families. By searching the sequences of trypsin-digested peptides of the separated HPLC fractions against the NCBI database, T. gracilis venom was found to contain 40.3% metalloproteases (SVMPs), 15.3% serine proteases, 6.6% phospholipases A2, 5.0% L-amino acid oxidase, 4.6% Cys-rich secretory proteins (CRISPs), 3.2% disintegrins, 2.9% vascular endothelial growth factors (VEGFs), 1.9% C-type lectin-like proteins, and 20.2% of minor toxins, nontoxins, and unidentified peptides or compounds. Sixteen of these proteoforms matched the toxins whose full amino-acid sequences have been deduced from T. gracilis venom gland cDNA sequences. The hemorrhagic venom of T. gracilis appears to be especially rich in PI-class SVMPs and lacks basic phospholipase A2. We also cloned and sequenced the cDNAs encoding two CRISP and three VEGF variants from T. gracilis venom glands. Sequence alignments and comparison revealed that the PI-SVMP, kallikrein-like proteases, CRISPs, and VEGF-F of T. gracilis and Ovophis okinavensis are structurally most similar, consistent with their close phylogenetic relationship. However, the expression levels of some of their toxins were rather different, possibly due to their distinct ecological and prey conditions.

Funder

Academia Sinica

Ministry of Science and Technology

Council of Agriculture, the Kaohsiung City Government, the National Pingtung University of Science and Technology

Kaohsiung Chang Gung Memorial Hospital and National Pingtung University of Science and Technology Joint Research Program

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3