Autophagic Degradation Is Involved in Cell Protection against Ricin Toxin

Author:

Wu Yu12,Taisne Clémence3,Mahtal Nassim1,Forrester Alison4,Lussignol Marion3,Cintrat Jean-Christophe5ORCID,Esclatine Audrey3,Gillet Daniel1ORCID,Barbier Julien1ORCID

Affiliation:

1. Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette 91191, France

2. Institute of Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China

3. Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France

4. Research Unit of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium

5. Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), SCBM, Gif-sur-Yvette 91191, France

Abstract

Autophagy is a complex and highly regulated degradative process, which acts as a survival pathway in response to cellular stress, starvation and pathogen infection. Ricin toxin is a plant toxin produced by the castor bean and classified as a category B biothreat agent. Ricin toxin inhibits cellular protein synthesis by catalytically inactivating ribosomes, leading to cell death. Currently, there is no licensed treatment for patients exposed to ricin. Ricin-induced apoptosis has been extensively studied; however, whether its intoxication via protein synthesis inhibition affects autophagy is not yet resolved. In this work, we demonstrated that ricin intoxication is accompanied by its own autophagic degradation in mammalian cells. Autophagy deficiency, by knocking down ATG5, attenuates ricin degradation, thus aggravating ricin-induced cytotoxicity. Additionally, the autophagy inducer SMER28 (Small Molecule Enhancer 28) partially protects cells against ricin cytotoxicity, an effect not observed in autophagy-deficient cells. These results demonstrate that autophagic degradation acts as a survival response of cells against ricin intoxication. This suggests that stimulation of autophagic degradation may be a strategy to counteract ricin intoxication.

Funder

R&D against CBRNE risks, CEA

LeishmaStop

SMERSEC

PLANT

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3