Evolution of Three-Finger Toxin Genes in Neotropical Colubrine Snakes (Colubridae)

Author:

Srodawa Kristy12ORCID,Cerda Peter A.13ORCID,Davis Rabosky Alison R.13ORCID,Crowe-Riddell Jenna M.134ORCID

Affiliation:

1. Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA

2. Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA

3. Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA

4. School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia

Abstract

Snake venom research has historically focused on front-fanged species (Viperidae and Elapidae), limiting our knowledge of venom evolution in rear-fanged snakes across their ecologically diverse phylogeny. Three-finger toxins (3FTxs) are a known neurotoxic component in the venoms of some rear-fanged snakes (Colubridae: Colubrinae), but it is unclear how prevalent 3FTxs are both in expression within venom glands and more broadly among colubrine species. Here, we used a transcriptomic approach to characterize the venom expression profiles of four species of colubrine snakes from the Neotropics that were dominated by 3FTx expression (in the genera Chironius, Oxybelis, Rhinobothryum, and Spilotes). By reconstructing the gene trees of 3FTxs, we found evidence of putative novel heterodimers in the sequences of Chironius multiventris and Oxybelis aeneus, revealing an instance of parallel evolution of this structural change in 3FTxs among rear-fanged colubrine snakes. We also found positive selection at sites within structural loops or “fingers” of 3FTxs, indicating these areas may be key binding sites that interact with prey target molecules. Overall, our results highlight the importance of exploring the venoms of understudied species in reconstructing the full evolutionary history of toxins across the tree of life.

Funder

University of Michigan

University of Michigan Rackham Graduate School

University of Michigan Ecology and Evolutionary Biology Department

University of Michigan Museum of Zoology

Theodore Roosevelt Memorial Fund from the American Museum of Natural History

Undergraduate Research Opportunity Program (UROP) at the University of Michigan

Advanced Research Computing at the University of Michigan, Ann Arbor

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3