Design of Network-on-Chip-Based Restricted Coulomb Energy Neural Network Accelerator on FPGA Device

Author:

Kang Soongyu1ORCID,Lee Seongjoo23ORCID,Jung Yunho14ORCID

Affiliation:

1. School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea

2. Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea

3. Department of Convergence Engineering of Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea

4. Department of Smart Air Mobility, Korea Aerospace University, Goyang 10540, Republic of Korea

Abstract

Sensor applications in internet of things (IoT) systems, coupled with artificial intelligence (AI) technology, are becoming an increasingly significant part of modern life. For low-latency AI computation in IoT systems, there is a growing preference for edge-based computing over cloud-based alternatives. The restricted coulomb energy neural network (RCE-NN) is a machine learning algorithm well-suited for implementation on edge devices due to its simple learning and recognition scheme. In addition, because the RCE-NN generates neurons as needed, it is easy to adjust the network structure and learn additional data. Therefore, the RCE-NN can provide edge-based real-time processing for various sensor applications. However, previous RCE-NN accelerators have limited scalability when the number of neurons increases. In this paper, we propose a network-on-chip (NoC)-based RCE-NN accelerator and present the results of implementation on a field-programmable gate array (FPGA). NoC is an effective solution for managing massive interconnections. The proposed RCE-NN accelerator utilizes a hierarchical–star (H–star) topology, which efficiently handles a large number of neurons, along with routers specifically designed for the RCE-NN. These approaches result in only a slight decrease in the maximum operating frequency as the number of neurons increases. Consequently, the maximum operating frequency of the proposed RCE-NN accelerator with 512 neurons increased by 126.1% compared to a previous RCE-NN accelerator. This enhancement was verified with two datasets for gas and sign language recognition, achieving accelerations of up to 54.8% in learning time and up to 45.7% in recognition time. The NoC scheme of the proposed RCE-NN accelerator is an appropriate solution to ensure the scalability of the neural network while providing high-performance on-chip learning and recognition.

Funder

Technology Innovation Program

Ministry of Trade, Industry, and Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3