All-Solution Processed Single-Layer WOLEDs Using [Pt(salicylidenes)] as Guests in a PFO Matrix

Author:

Germino José CarlosORCID,Duarte Luís Gustavo Teixeira AlvesORCID,Mendes Rodrigo AraújoORCID,Faleiros Marcelo Meira,de Morais Andreia,de Freitas Jilian NeiORCID,Pereira LuizORCID,Atvars Teresa Dib ZambonORCID

Abstract

Herein, we report the synthesis and characterization of two Pt(II) coordination compounds, the new platinum(II)[N,N′-bis(salicylidene)-3,4-diaminobenzophenone)] ([Pt(sal-3,4-ben)]) and the already well-known platinum(II)[N,N′-bis(salicylidene)-o-phenylenediamine] ([Pt(salophen)]), along with their application as guests in a poly [9,9-dioctylfluorenyl-2,7-diyl] (PFO) conjugated polymer in all-solution processed single-layer white organic light-emitting diodes. Completely different performances were achieved: 2.2% and 15.3% of external quantum efficiencies; 2.8 cd A−1 and 12.1 cd A−1 of current efficiencies; and 3103 cd m−2 and 6224 cd m−2 of luminance for the [Pt(salophen)] and [Pt(sal-3,4-ben)] complexes, respectively. The Commission Internationale de l’Eclairage (CIE 1931) chromaticity color coordinates are (0.33, 0.33) for both 0.1% mol/mol Pt(II):PFO composites at between approximately 3.2 and 8 V. The optoelectronic properties of doped and neat PFO films have been investigated, using steady-state and time-resolved photoluminescence. Theoretical calculations at the level of relativistic density functional theory explained these results, based on the presence of the Pt(II) central ion’s phosphorescence emission, considering spin-orbit coupling relationships. The overall results are explained, taking into account the active layer morphological properties, along with the device’s electric balance and the emitter’s efficiencies, according to deep-trap space-charge models. Considering the very simple structure of the device and the ease of synthesis of such compounds, the developed framework can offer a good trade-off for solution-deposited white organic light-emitting diodes (WOLEDs), with further applications in the field of lighting and signage.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3