New and Recent Results for Thermoelectric Energy Conversion in Graded Alloys at Nanoscale

Author:

Cimmelli Vito AntonioORCID,Rogolino PatriziaORCID

Abstract

In this article, we review the main features of nonlocal and nonlinear heat transport in nanosystems and analyze some celebrated differential equations which describe this phenomenon. Then, we present a new heat-transport equation arising within the so-called thermomass theory of heat conduction. We illustrate how such a theory can be applied to the analysis of the efficiency of a thermoelectric energy generator constituted by a Silicon–Germanium alloy, as the application and new results for a nanowire of length L=100 nm, are presented as well. The thermal conductivity of the nanowire as a function of composition and temperature is determined in light of the experimental data. Additionally, the best-fit curve is obtained. The dependency of the thermoelectric efficiency of the system on both the composition and the difference of temperature applied to its ends is investigated. For the temperatures T=300 K, T=400 K, and T=500 K, we calculate the values of the composition corresponding to the optimal efficiency, as well as the optimal values of the thermal conductivity. Finally, these new results are compared with recent ones obtained for a system of length L=3 mm, in order to point out the benefits due to the miniaturization in thermoelectric energy conversion.

Funder

University of Basilicata

University of Messina

Istituto Nazionale di Alta Matematica Francesco Severi

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3