Ag Nanoparticles Decorated ZnO Nanorods as Multifunctional SERS Substrates for Ultrasensitive Detection and Catalytic Degradation of Rhodamine B

Author:

Chen Xingang,Zhu LeiORCID,Ma Zhipeng,Wang Meilin,Zhao Rui,Zou Yueyue,Fan Yijie

Abstract

Industrial wastewater containing large amounts of organic pollutants is a severe threat to the environment and human health. Thus, the rapid detection and removal of these pollutants from wastewater are essential to protect public health and the ecological environment. In this study, a multifunctional and reusable surface-enhanced Raman scattering (SERS) substrate by growing Ag nanoparticles (NPs) on ZnO nanorods (NRs) was produced for detecting and degrading Rhodamine B (RhB) dye. The ZnO/Ag substrate exhibited excellent sensitivity, and the limit of detection (LOD) for RhB was as low as 10−11 M. Furthermore, the SERS substrate could efficiently degrade RhB, with a degradation efficiency of nearly 100% within 150 min. Moreover, it retained good SERS activity after multiple repeated uses. The interaction between Ag NPs, ZnO, and RhB was further investigated, and the mechanism of SERS and photocatalysis was proposed. The as-prepared ZnO/Ag composite structure could be highly applicable as a multifunctional SERS substrate for the rapid detection and photocatalytic degradation of trace amounts of organic pollutants in water.

Funder

the National Natural Science Foundation of China

the Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3