Abstract
Graphitic carbon nitride (g−CN), a promising visible-light-responsive semiconductor material, is regarded as a fascinating photocatalyst and heterogeneous catalyst for various reactions due to its non-toxicity, high thermal durability and chemical durability, and “earth-abundant” nature. However, practical applications of g−CN in photoelectrochemical (PEC) and photoelectronic devices are still in the early stages of development due to the difficulties in fabricating high-quality g−CN layers on substrates, wide band gaps, high charge-recombination rates, and low electronic conductivity. Various fabrication and modification strategies of g−CN-based films have been reported. This review summarizes the latest progress related to the growth and modification of high-quality g−CN-based films. Furthermore, (1) the classification of synthetic pathways for the preparation of g−CN films, (2) functionalization of g−CN films at an atomic level (elemental doping) and molecular level (copolymerization), (3) modification of g−CN films with a co-catalyst, and (4) composite films fabricating, will be discussed in detail. Last but not least, this review will conclude with a summary and some invigorating viewpoints on the key challenges and future developments.
Funder
Key Research and Development Program of Guangdong Province, China
Natural Science Foundation of Sichuan Province
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献