Abstract
In recent years, flexible thermoelectric generators(f-TEG), which can generate electricity by environmental temperature difference and have low cost, have been widely concerned in self-powered energy devices for underground pipe network monitoring. This paper studied the Cu2S films by screen-printing. The effects of different proportions of p-type Cu2S/poly 3,4-ethylene dioxythiophene-polystyrene sulfonate (PEDOT:PSS) mixture on the thermoelectric properties of films were studied. The interfacial effect of the two materials, forming a superconducting layer on the surface of Cu2S, leads to the enhancement of film conductivity with the increase of PEDOT:PSS. In addition, the Seebeck coefficient decreases with the increase of PEDOT:PSS due to the excessive bandgap difference between the two materials. When the content ratio of Cu2S and PEDOT:PSS was 1:1.2, the prepared film had the optimal thermoelectric performance, with a maximum power factor (PF) of 20.60 μW·m−1·K−1. The conductivity reached 75% of the initial value after 1500 bending tests. In addition, a fully printed Te-free f-TEG with a fan-shaped structure by Cu2S and Ag2Se was constructed. When the temperature difference (ΔT) was 35 K, the output voltage of the f-TEG was 33.50 mV, and the maximum power was 163.20 nW. Thus, it is envisaged that large thermoelectric output can be obtained by building a multi-layer stacking f-TEG for continuous self-powered monitoring.
Funder
National Natural Science Foundation of China
Key R&D Program of Shanxi Province
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献