Progress in THz Rectifier Technology: Research and Perspectives

Author:

Citroni RoccoORCID,Di Paolo Franco,Livreri PatriziaORCID

Abstract

Schottky diode (SD) has seen great improvements in the past few decades and, for many THz applications, it is the most useful device. However, the use and recycling of forms of energy such as solar energy and the infrared thermal radiation that the Earth continuously emits represent one of the most relevant and critical issues for this diode, which is unable to rectify signals above 5 THz. The goal is to develop highly efficient diodes capable of converting radiation from IR spectra to visible ones in direct current (DC). A set of performance criteria is investigated to select some of the most prominent materials required for developing innovative types of electrodes, but also a wide variety of insulator layers is required for the rectification process, which can affect the performance of the device. The current rectifying devices are here reviewed according to the defined performance criteria. The main aim of this review is to provide a wide overview of recent research progress, specific issues, performance, and future directions in THz rectifier technology based on quantum mechanical tunneling and asymmetric structure.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3