Synthesis and Comparative Studies of Glucose Oxidase Immobilized on Fe3O4 Magnetic Nanoparticles Using Different Coupling Agents

Author:

Rusu Alina GabrielaORCID,Chiriac Aurica P.ORCID,Nita Loredana Elena,Balan VeraORCID,Serban Alexandru Mihail,Croitoriu Alexandra

Abstract

Squaric acid (SA) is a compound with potential to crosslink biomacromolecules. Although SA has become over the last years a well-known crosslinking agent as a result of its good biocompatibility, glutaraldehyde (GA), a compound with proven cytotoxicity is still one of the most used crosslinkers to develop nanomaterials. In this regard, the novelty of the present study consists in determining whether it may be possible to substitute GA with a new bifunctional and biocompatible compound, such as SA, in the process of enzyme immobilization on the surface of magnetic nanoparticles (MNPs). Thus, a direct comparison between SA- and GA-functionalized magnetic nanoparticles was realized in terms of physico-chemical properties and ability to immobilize catalytic enzymes. The optimal conditions of the synthesis of the two types of GOx-immobilized MNPs were described, thus emphasizing the difference between the two reagents. Scanning Electron Microscopy and Dynamic Light Scattering were used for size, shape and colloidal stability characterization of the pristine MNPs and of those coupled with GOx. Binding of GOx to MNPs by using GA or SA was confirmed by FT-IR spectroscopy. The stability of the immobilized and free enzyme was investigated by measuring the enzymatic activity. The study confirmed that the resulting activity of the immobilized enzyme and the optimization of enzyme immobilization depended on the type of reagent used and duration of the process. The catalytic performance of immobilized enzyme was tested, revealing that the long-term colloidal stability of SA-functionalized MNPs was superior to those prepared with GA. In conclusion, the SA-functionalized bioconjugates have a better potential as compared to the GA-modified nanosystems to be regarded as catalytic nanodevices for biomedical purposes such as biosensors.

Funder

Ministry of Research, Innovation and Digitization CNCS/CCCDI-UEFISCDI,

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3