Synthesis and Characterization of Monodispersed Spherical Calcium Oxide and Calcium Carbonate Nanoparticles via Simple Pyrolysis

Author:

Atchudan RajiORCID,Perumal SugunaORCID,Joo Jin,Lee Yong Rok

Abstract

In this study, calcium carbonate nanoparticles (CCNPs) and calcium oxide nanoparticles (CONPs) are synthesized by the carbonization/calcination of calcium oleate. CONPs are an essential inorganic material, and they are used as catalysts and as effective chemisorbents for toxic gases. CCNPs are widely used in plastics, printing ink, and medicines. Here, calcium oleate is used as a starting material for the preparation of CCNPs and CONPs. This calcium oleate is prepared from calcium hydroxide and oleic acid in ethanol under mild reflux conditions. The effect of the calcination temperature of calcium oleate is examined during the synthesis of CCNPs and CONPs. By simple carbonization/calcination, calcite-type CCNPs and CONPs are prepared at <550 °C and >600 °C, respectively. The synthesized nanomaterials are analyzed by various physicochemical characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) with derivative thermogravimetry (DTG), and scanning electron microscopy (SEM) with energy dispersive X-ray analysis. An X-ray diffractometer and the Scherrer formula are used to analyze the crystalline phase and crystallite size of prepared nanoparticles. TGA techniques confirm the thermal stability of the calcium oleate, CCNPs, and CONPs. The SEM analysis illustrates the dispersive behavior and cubic/spherical morphologies of CCNPs/CONPs. Furthermore, the obtained results are compared to the CCNP and CONP samples prepared using calcium hydroxide. As a result, the carbonization/calcination of calcium oleate produces monodispersed CONPs, which are then compared to the CONPs from calcium hydroxide. Additionally, from calcium oleate, CONPs can be prepared on a large scale in a cheap, convenient way, using simple equipment which can be applied in various applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3