Highly Active Amino-Fullerene Derivative-Modified TiO2 for Enhancing Formaldehyde Degradation Efficiency under Solar-Light Irradiation

Author:

Fan Jingbiao,Wang Tao,Wu Bo,Wang Chunru

Abstract

Formaldehyde (HCHO) is a ubiquitous indoor pollutant that seriously endangers human health. The removal of formaldehyde effectively at room temperature has always been a challenging problem. Here, a kind of amino-fullerene derivative (C60-EDA)-modified titanium dioxide (C60-EDA/TiO2) was prepared by one-step hydrothermal method, which could degrade the formaldehyde under solar light irradiation at room temperature with high efficiency and stability. Importantly, the introduction of C60-EDA not only increases the adsorption of the free formaldehyde molecules but also improves the utilization of sunlight and suppresses photoelectron-hole recombination. The experimental results indicated that the C60-EDA/TiO2 nanoparticles exhibit much higher formaldehyde removal efficiency than carboxyl-fullerene-modified TiO2, pristine TiO2 nanoparticles, and almost all other reported formaldehyde catalysts especially in the aspect of the quality of formaldehyde that is treated by catalyst with unit mass (mHCHO/mcatalyst = 40.85 mg/g), and the removal efficiency has kept more than 96% after 12 cycles. Finally, a potential formaldehyde degradation pathway was deduced based on the situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) and reaction intermediates. This work provides some indications into the design and fabrication of the catalysts with excellent catalytic performances for HCHO removal at room temperature.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3