Abstract
Silver and copper nanoparticles (AgNPs and CuNPs) coated with stabilizing moieties induce oxidative stress in both bacteria and mammalian cells. Effective antibacterial agents that can overcome existing mechanisms of antibacterial resistance will greatly improve biomedical interventions. In this study, we analyzed the effect of nanoparticle-induced stress. Escherichia coli and normal human bronchial epithelial (BEAS-2B) cells were selected for this study. The nanoparticle constructs tested showed low toxicity to mammalian cells except for the polyvinylpyrrolidone-surface-stabilized copper nanoparticles. In fact, both types of copper nanoparticles used in this study induced higher levels of reactive oxygen species than the surface-stabilized silver nanoparticles. In contrast to mammalian cells, the surface-stabilized silver and copper nanoparticles showed varying levels of toxicity to bacteria cells. These data are expected to aid in bridging the knowledge gap in differential toxicities of silver and copper nanoparticles against bacteria and mammalian cells and will also improve infection interventions.
Subject
General Materials Science,General Chemical Engineering
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献