A Hyperspectral Image Classification Method Based on the Nonlocal Attention Mechanism of a Multiscale Convolutional Neural Network

Author:

Li Mingtian1,Lu Yu2,Cao Shixian1,Wang Xinyu1,Xie Shanjuan13

Affiliation:

1. Institute of Remote Sensing and Earth Sciences, School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China

2. SenseTime Research, Shenzhen 518000, China

3. Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou Normal University, Hangzhou 311121, China

Abstract

Recently, convolution neural networks have been widely used in hyperspectral image classification and have achieved excellent performance. However, the fixed convolution kernel receptive field often leads to incomplete feature extraction, and the high redundancy of spectral information leads to difficulties in spectral feature extraction. To solve these problems, we propose a nonlocal attention mechanism of a 2D–3D hybrid CNN (2-3D-NL CNN), which includes an inception block and a nonlocal attention module. The inception block uses convolution kernels of different sizes to equip the network with multiscale receptive fields to extract the multiscale spatial features of ground objects. The nonlocal attention module enables the network to obtain a more comprehensive receptive field in the spatial and spectral dimensions while suppressing the information redundancy of the spectral dimension, making the extraction of spectral features easier. Experiments on two hyperspectral datasets, Pavia University and Salians, validate the effectiveness of the inception block and the nonlocal attention module. The results show that our model achieves an overall classification accuracy of 99.81% and 99.42% on the two datasets, respectively, which is higher than the accuracy of the existing model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3