Tomato and Watermelon Production with Mulches and Automatic Drip Irrigation in North Dakota

Author:

Vaddevolu Uday,Lester Justin,Jia XinhuaORCID,Scherer Thomas,Lee Chiwon

Abstract

In North Dakota, agriculture contributes a large sector of the state’s economy, but vegetable production is limited due to the state’s climate condition. Inadequate soil moisture and low soil temperature are the two major factors prohibiting quality produce and high-yield vegetable production. In this study, a soil-water potential, sensor-based drip irrigation system was developed, designed, and installed to evaluate its application on tomato and watermelon productions in a two-year field experiment in 2019 and 2020. The experimental treatments were drip irrigation and no irrigation under three mulches: black plastic, clear plastic, and landscape fabric mulches. Irrigation was scheduled at 8:00 am for watermelon and 9:00 a.m. for tomato, with the ability for each irrigation event to be bypassed based on the soil moisture conditions. Due to rainfall differences in the two years, irrigation was barely needed in 2019, but in 2020, drip irrigation was applied frequently. On average, for the two-years’ field experiment, the highest yield for tomatoes was obtained from drip irrigation under black plastic drip irrigation treatment with 40.24 Mg ha−1 in 2020, whereas the highest yield for watermelon was from drip irrigation under clear plastic mulch with 165.55 Mg ha−1 in 2020. The effect of mulch, irrigation, and combined practices were analyzed based on the average fruit weight and diameter, electrical conductivity (EC), pH, and sugar content of the samples. The results showed that for watermelon, the average weight and diameter were significantly heavier and higher with irrigation treatments, but the EC and the pH values were significantly higher with mulch treatments. For tomatoes, the average weight, diameter, pH, and sugar content were all significantly higher with mulch treatment, but the EC was higher with irrigation treatment.

Funder

North Dakota Department of Agriculture

U.S. Geological Survey

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3