On the Role of External Walls in the Reduction of Energy Demand and the Mitigation of Human Thermal Discomfort

Author:

Kisilewicz Tomasz

Abstract

The structure and thermal properties of external walls affect both the thermal conditions inside the building and the energy demand. This applies to the energy requirement for heating as well as cooling. While the relationship between thermal insulation and heating is well-known, the effect of thermal insulation on overheating is not evident. One can find opinions that thick thermal insulation creates a “thermos effect” and significantly deteriorates the comfort conditions during the summer. In order to prove these statements, an office room with south-oriented glazing and a high thermal load from equipment was simulated by means of the Energy Plus program. The reference variant was a two-layer wall made from ceramic blocks and a 10 cm layer of thermal insulation. The duration of overheating in the investigated intensively used office space without window shading was approximately 26 to 29 days per year, depending on the expected comfort acceptance range, while in the case of the not insulated wall, it would be shorter by over 3 days. Increasing the thickness of the thermal insulation layer by up to 30 cm extended the overheating period by 4% to 9%. In relation to the whole simulation period, covering four summer months, this means approximately two extra days of discomfort. The effects of various passive methods of protecting buildings against overheating were also investigated. The use of night ventilation in this facility enables reducing the unfavorable conditions by as much as 31%, or up to 46% of the initial period of overheating. The change of the thermal inertia of a building by replacing the ceramic layer with heavy structural concrete allows a further reduction of the overheating duration by 8% to 9%. When the most effective ways of overheating protection are applied, such as night cooling, even a significant thickening of insulation no longer has any impact on its duration. The results shown above are obviously related to the adopted assumptions. However, on the basis of the conducted analyses, it is possible to reduce concerns relating to excessive insulating the building with respect to overheating. Having an optimal window area with nighttime cooling of buildings, window shading, and the inertial benefits associated with a massive construction are the most important and effective measures of protection against overheating. Efficient thermal insulation of the walls does not conflict with the thermal comfort conditions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3