Studies on Pollen Morphology, Pollen Vitality and Preservation Methods of Gleditsia sinensis Lam. (Fabaceae)

Author:

Liu Qiao1234,Yang Ju1234,Wang Xiurong1,Zhao Yang1234

Affiliation:

1. College of Forestry, Guizhou University, Guiyang 550025, China

2. Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China

3. Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guiyang 550025, China

4. Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China

Abstract

Gleditsia sinensis Lam. (Fabaceae) is an endemic species in China, which has a wide range of ecological functions and high economic value. G. sinensis belongs to androdioecy, and the stamens of perfect flowers are aborted, meaning that a perfect flower is a functional female flower. Understanding the dynamic process of flowering and the characteristics of pollen morphology effectively determine the viability of pollen vitality, and the suitable conditions for short-term storage of pollen can provide theoretical basis and technical reference for hybrid breeding and germplasm conservation of G. sinensis. In this study, the male plants of G. sinensis in Guiyang area were used as research materials. The flowering dynamic process of male flowers was recorded through field observation. The morphology of pollen was observed and analyzed with a scanning electron microscope (SEM). The germination characteristics of pollen were studied with an in vitro germination method, and the pollen vitality was also determined using four staining methods. The effects of different storage temperatures and water contents on pollen germination rate were discussed. The results showed that the male flowers of G. sinensis had a short, single flowering period, lasting 2–3 days from the opening to the shedding. The dynamic opening process of a single flower was artificially divided into five stages. Pollen grains of G. sinensis are oblate spheroidal, tricolporate with equatorial elongated endoapertures and the sporoderm surface is reticulate. The MTT (Thiazolyl Blue Tetrazolium Bromide) staining method could accurately and quickly determine the pollen vitality of G. sinensis. The highest pollen germination rate was 65.89% ± 3.41%, and the length of the pollen tube was 3.96 mm after cultured in 15% sucrose + 100 mg/L boric acid + 20 mg/L calcium chloride for 24 h. It was necessary to collect the pollen at the big bud stage, which was conducive to improving the efficiency of pollen collection because the pollen had been mature with high pollen vitality at this stage. When it came to pollen preservation, the pollen germination rate was significantly affected by storage time, storage temperature and pollen water content. The pollen still had high vitality after being stored at −80 °C for 30 days when the moisture content of the pollen decreased to 9%, and the pollen germination rate only decreased by 28.84% compared with that before storage. In conclusion, this study has comprehensively and systematically studied the morphology, vitality determination and preservation methods of the pollen of G. sinensis, providing a theoretical basis for the cross regional breeding and the conservation and utilization of germplasm resources.

Funder

Characteristic Forestry Industry Research Project of Guizhou Provinc

Science and Technology Plan Project of Guizhou Province

Guizhou Characteristic Forestry Industry scientific Research Project-Research and Demonstration of Key Technology of Directional Cultivation of Gleditsia sinensis

Guizhou Science and Technology Planning Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3