Long-Term Patterns in Forest Soil CO2 Flux in a Pacific Northwest Temperate Rainforest

Author:

Fischer Dylan G.1ORCID,Chamberlain Zoe R.2ORCID,Cook Claire E.2ORCID,Martin Randall Adam3,Mueller Liam O.4

Affiliation:

1. Environmental Studies Path, SEM II, The Evergreen State College, Olympia, WA 98505, USA

2. EEON Laboratory, The Evergreen State College, Olympia, WA 98505, USA

3. Ecostudies Institute, P.O. Box 1614, Olympia, WA 98507, USA

4. Department of Molecular Biology, University of California San Diego, San Diego, CA 92093, USA

Abstract

Soil CO2 efflux (Fs) plays an important role in forest carbon cycling yet estimates of Fs can remain unconstrained in many systems due to the difficulty in measuring Fs over long time scales in natural systems. It is important to quantify seasonal patterns in Fs through long-term datasets because individual years may show patterns that are not reflective of long-term averages. Additionally, determining predictability of net patterns in soil carbon flux based on environmental factors, such as moisture and temperature, is critical for appropriately modeling forest carbon flux. Ecosystems in moderate climates may have strong CO2 efflux even during winter, and so continuous quantification of annual variability is especially important. Here, we used a 2008–2023 dataset in a lowland temperate forest ecosystem to address two main questions: (1) What are the seasonal patterns in Fs in a highly productive temperate rainforest? (2) How is average Fs across our study area predicted by average coincident temperature, soil moisture and precipitation totals? Data showed clear seasonality where Fs values are higher in summer. We also find Fs across our measurement network was predicted by variation in abiotic factors, but the interaction between precipitation/moisture and temperature resulted in greater complexity. Specifically, in spring a relatively strong relationship between air temperature and Fs was present, while in summer the relationship between temperature and Fs was flat. Winter and autumn seasons showed weak positive relationships. Meanwhile, a negative relationship between precipitation and Fs was present in only some seasons because most precipitation falls outside the normal growing season in our study system. Our data help constrain estimates of soil CO2 fluxes in a temperate rainforest ecosystem at ~14–20 kg C ha−1 day−1 in summer and autumn, and 6.5–10.5 kg C ha−1 day−1 in winter and spring seasons. Together, estimates suggest this highly productive temperate rainforest has annual soil-to-atmosphere fluxes of CO2 that amount to greater than 4.5 Mg C ha−1 year−1. Sensitivity of such fluxes to regional climate change will depend on the balance of Fs determined by autotrophic phenological responses versus heterotrophic temperature and moisture sensitivity. Relatively strong seasonal variation coupled with comparatively weak responses to abiotic variables suggest Fs may be driven largely by seasonal trends in autotrophic respiration. Accordingly, plant and tree responses to climate may have a stronger effect on Fs in the context of climate change than temperature or moisture changes alone.

Funder

The Evergreen State College Sabbatical Support to Dylan Fischer

The Evergreen State College Foundation, Evergreen Sponsored Research

The Evergreen Summer Undergraduate Research Fellowship

The Evergreen Fund for Innovation

Microsoft Corporation

Publisher

MDPI AG

Reference52 articles.

1. The Temperature Dependence of Soil Organic Matter Decomposition, and the Effect of Global Warming on Soil Organic C Storage;Kirschbaum;Soil Biol. Biochem.,1995

2. Old-Growth Forests as Global Carbon Sinks;Luyssaert;Nature,2008

3. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., and Heimann, M. (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Climate.

4. Greenhouse Gas Emissions from Soils—A Review;Oertel;Geochemistry,2016

5. Carbon Pools and Flux of Global Forest Ecosystems;Dixon;Science,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3