Characterization of Damage Progress in the Defective Grouted Sleeve Connection Using Combined Acoustic Emission and Ultrasonics

Author:

Zhang Lu,Fang Zhenmin,Tang Yongze,Li Hongyu,Liu Qizhou

Abstract

The grouted sleeve connection is one of the most widely used connections for prefabricated buildings (PBs). Usually, its quality can have a significant impact on the safety of the whole PB, especially for the internal flaws that form during sleeve grouting. It is directly related to the mechanical performance and failure behavior of the grouted sleeve. Therefore, it is essential to understand the damage progression of the defective grouted sleeve connection. However, destructive testing is the mainstream measure to evaluate the grout sleeves, which is not applicable for in situ inspection. Therefore, this paper proposes a combined acoustic emission (AE) and ultrasonic testing (UT) method to characterize the damage progress of a grouted sleeve with different degrees of internal flaws under tensile loading. The UT was conducted before loading to evaluate the internal flaws. Additionally, the AE was used as the processing monitoring technique during the tensile testing. Two damage modes were identified: (i) brittle mode associated with the rebar pullout; (ii) ductile mode associated with the rapture of the rebar. The UT energy ratio was selected as the most sensitive feature to the internal flaws, both numerically and experimentally. The AE signatures of different damage phases and different damage modes were determined and characterized. For the brittle and ductile damage modes, two and three phases appeared in the AE activities, respectively. The proposed combined AE and UT method can provide a reliable and convenient nondestructive evaluation of grouted sleeves with internal flaws. Moreover, it can also characterize the damage progress of the grouted sleeve connections in real-time.

Funder

National Natural Science Foundation of China

Guangxi Science and Technology Base and Special Fund for Talents Program

Key Laboratory of Intelligent Perception and Advanced Control of State Ethnic Affairs Commission

Guangxi Natural Science Foundation Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3