COVIDX-LwNet: A Lightweight Network Ensemble Model for the Detection of COVID-19 Based on Chest X-ray Images

Author:

Wang WeiORCID,Liu Shuxian,Xu Huan,Deng Le

Abstract

Recently, the COVID-19 pandemic coronavirus has put a lot of pressure on health systems around the world. One of the most common ways to detect COVID-19 is to use chest X-ray images, which have the advantage of being cheap and fast. However, in the early days of the COVID-19 outbreak, most studies applied pretrained convolutional neural network (CNN) models, and the features produced by the last convolutional layer were directly passed into the classification head. In this study, the proposed ensemble model consists of three lightweight networks, Xception, MobileNetV2 and NasNetMobile as three original feature extractors, and then three base classifiers are obtained by adding the coordinated attention module, LSTM and a new classification head to the original feature extractors. The classification results from the three base classifiers are then fused by a confidence fusion method. Three publicly available chest X-ray datasets for COVID-19 testing were considered, with ternary (COVID-19, normal and other pneumonia) and quaternary (COVID-19, normal) analyses performed on the first two datasets, bacterial pneumonia and viral pneumonia classification, and achieved high accuracy rates of 95.56% and 91.20%, respectively. The third dataset was used to compare the performance of the model compared to other models and the generalization ability on different datasets. We performed a thorough ablation study on the first dataset to understand the impact of each proposed component. Finally, we also performed visualizations. These saliency maps not only explain key prediction decisions of the model, but also help radiologists locate areas of infection. Through extensive experiments, it was finally found that the results obtained by the proposed method are comparable to the state-of-the-art methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. (2022, October 19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline#!.

2. (2022, October 19). Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---19-october-2022.

3. Isolation and rapid sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia;Med. J. Aust.,2020

4. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version);Military Med. Res.,2020

5. The definition and classification of pneumonia;Pneumonia,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3