Intelligent Fault-Diagnosis System for Acoustic Logging Tool Based on Multi-Technology Fusion

Author:

Hao Xiaolong,Ju Xiaodong,Lu Junqiang,Men Baiyong,Zhou Jing

Abstract

To improve the performance of acoustic logging tool in detecting three-dimensional formation, larger and more complicated transducer arrays have been used, which will greatly increase the difficulty of fault diagnosis during tool assembly and maintenance. As a result, traditional passive diagnostic methods become inefficient, and very skilled assemblers and maintainers are required. In this study, fault-diagnosis requirement for the acoustic logging tool at different levels has been analyzed from the perspective of the tool designer. An intelligent fault-diagnosis system consisting of a master-slave hardware architecture and a systemic diagnosis strategy was developed. The hardware system is based on the embedded technology, while the diagnosis strategy is built upon fault-tree analysis and data-driven methods. Diagnostic practice shows that this intelligent system can achieve four levels of fault diagnosis for the acoustic logging tool: System, subsystem, circuit board, and component. This study provided a more rigorous and professional fault diagnosis during tool assembly and maintenance. It is expected that this proposed method would be of great help in achieving cost reduction and improving work efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference31 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3