Numerical Study of Suspension Filtration Model in Porous Medium with Modified Deposition Kinetics

Author:

Fayziev BekzodjonORCID,Ibragimov GafurjanORCID,Khuzhayorov Bakhtiyor,Alias Idham Arif

Abstract

Filtration is one of the most used technologies in chemical engineering. Development of computer technology and computational mathematics made it possible to explore such processes by mathematical modeling and computational methods. The article deals with the study of suspension filtration in a porous medium with modified deposition kinetics. It is suggested that deposition is formed in two types, reversible and irreversible. The model of suspension filtration in porous media consists of the mass balance equation and kinetic equations for each type of deposition. The model includes dynamic factors and multi-stage deposition kinetics. By using the symmetricity of porous media, the higher dimensional cases are reduced to the one-dimensional case. To solve the problem, a stable, effective and simple numerical algorithm is proposed based on the finite difference method. Sufficient conditions for stability of schemes are found. Based on numerical results, influences of dynamic factors on solid particle transport and deposition characteristics are analyzed. It is shown that the dynamic factors mainly affect the profiles of changes in the concentration of deposition of the active zone.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference45 articles.

1. Water Treatment: Principles and Design;Crittenden,2012

2. Advanced Reservoir Engineering;Tarek,2005

3. Anomalous Nonisothermal Transfer of a Substance in an Inhomogeneous Porous Medium

4. Fluid Flow in Fractured Porous Media;Liu,2019

5. Filtration of Heterogeneous Liquids in Porous Media;Khuzhayorov,2005

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3