On the Chebyshev Polynomials and Some of Their Reciprocal Sums

Author:

Zhang Wenpeng,Han DiORCID

Abstract

In this paper, we utilize the mathematical induction, the properties of symmetric polynomial sequences and Chebyshev polynomials to study the calculating problems of a certain reciprocal sums of Chebyshev polynomials, and give two interesting identities for them. These formulae not only reveal the close relationship between the trigonometric function and the Riemann ζ-function, but also generalized some existing results. At the same time, an error in an existing reference is corrected.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference23 articles.

1. Polynomials and Polynomial Inequalities;Borwein,1995

2. Some Identities Involving Chebyshev Polynomials

3. Representing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials in terms of Chebyshev polynomials;Kim;Adv. Stud. Contemp. Math.,2018

4. Representation by several orthogonal polynomials for sums of finite products of Chebyshev polynomials of the first, third and fourth kinds;Kim;Adv. Differ. Equ.,2019

5. Representing Sums of Finite Products of Chebyshev Polynomials of the First Kind and Lucas Polynomials by Chebyshev Polynomials;Kim;Mathematics,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3