Framework of Specific Description Generation for Aluminum Alloy Metallographic Image Based on Visual and Language Information Fusion

Author:

Chen Dali,Liu Yang,Liu Shixin,Liu Fang,Chen Yangquan

Abstract

The automatic generation of language description is an important task in the intelligent analysis of aluminum alloy metallographic images, and is crucial for the high-quality development of the non-ferrous metals manufacturing industry. In this paper, we propose a methodological framework to generate the language description for aluminum alloy metallographic images. The framework consists of two parts: feature extraction and classification. In the process of feature extraction, we used ResNet (residual network) and CNN (convolutional neural network) to extract visual features from metallographic images. Meanwhile, we used LSTM (long short term memory), FastText, and TextCNN to extract language text features from questions. Then, we implemented a fusion strategy to integrate these two features. Finally, we used the fused features as the input of the classification network. This framework turns the description generation problem into a classification task, which greatly simplifies the generation process of language description and provides a new idea for the description of metallographic images. Based on this basic framework, we implemented seven different methods to generate the language description of aluminum alloy metallographic images, and their performance comparisons are given. To verify the effectiveness of this framework, we built the aluminum alloy metallographic image dataset. A large number of experimental results show that this framework can effectively accomplish the given tasks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3