Author:
Hashemkhani Zolfani Sarfaraz,Derakhti Arman
Abstract
In this study, a new way of criteria selection and a weighting system will be presented in a multi-disciplinary framework. Weighting criteria in Multi-Attribute Decision Making (MADM) has been developing as the most attractive section in the field. Although many ideas have been developed during the last decades, there is no such great diversity that can be mentioned in the literature. This study is looking from outside the box and is presenting something totally new by using big data and text mining in a Prospective MADM outline. PMADM is a hybrid interconnected concept between the Futures Studies and MADM fields. Text mining, which is known as a useful tool in Futures Studies, is applied to create a widespread pilot system for weighting and criteria selection in the PMADM outline. Latent Semantic Analysis (LSA), as an influential method inside the general concept of text mining, is applied to show how a data warehouse’s output, which in this case is Scopus, can reach the final criteria selection and weighting of the criteria.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献